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The following students were supported either entirely or in part by contract during 

the period October 1,1985 - September 30,1986. 

1. William Pat Amott 

2. Stuart C. Billette 

3. Steven G. Kargl 

4. Bruce T. Unger 



III.   Acoustical Scattering Theory and Experiments 

A. Motivation for this Research:   An Overview. 

The general motivation for research into acoustic scattering from elastic objects of 

simple shape has been discussed previously. 1-2-01 It may be thought that scattering from 

elastic spheres is too specialized of problem to be of any practical consequence; however, 

we intend to show tiiat our unf'erstanding of the surface-wave contributions to directional 

caustics, which we have studied for spheres, is helpful for understanding the echoes from 

complicated elastic structures. The experiments on tiie backscattering of sound from elastic 

hemispheres in water (Sec. IIIE below) is a clear step in that direction. Previous work on 

die directional caustics in tiie scattering from elastic sphere was concerned witii soUd 

spheres whereas the emphasis of the current experiments is on hollow (air-filled) elastic 

spheres. In all cases the surrounding medium is water. 

One important aspect of our research is our ability to model and measure scattering 

ampUtudes not just in the exact backward direction but also in near backward directions 

since the width of the diffraction lobes in near-backward directions are indicative of the 

target's size.3-5,Gl 

B. Fabry-Perot Analysis of Resonances Based on the Watson 

Transformation and the Synthesis of Backscattering Amplitudes 

This work was largely carried out by Kevin L. Williams during the course of his 

Ph.D. dissertation project.5 (Since September 1985 Williams has been working in 

acoustics at die Naval Coastal Systems Center.) During the present contract period, two 

manuscripts were completed and published on this work.A2.C2 item C2 has been 

reproduced in the present report as Appendix I since it gives both an overview and die 

principal madiematical results. The resulting form for resonance contributions is closer to a 

form appearing in the analysis of Fabry-Perot resonators dian to expressions appearing in 

Resonance Scattering Theory (RST). Unlike RST, the contributions to die scattering from 



a given class of surface waves are summed directly in a way which is uniform in 

dependence on frequency. 

Reference A2 also gives (and verifies) novel expressions for a coupling coefficient 

descriptive of the interaction of an acoustic wave in water with an elastic surface wave on a 

solid spherical surface. This type of coefficient is needed for proper extension of the 

Geometrical Theory of Diffraction (GTD), the prediction of scattering amplitudes from 

curved elastic structures in water. 

C. Focused Backscattering due to Lamb Waves on Hollow Spherical 

Shells 

Our previous quantitative analysis'^-^AZ.C^.Gl of focused backscattering due to 

elastic surface waves emphasized the case of a solid elastic sphere. The phenomena should 

also occur in the scattering of high-frequency sound from a spherical shell in water. That 

this is so may be seen by applying tiie ray diagram (Fig. 1 of Appendix I) in tiie case of 

elastic surface waves on a shell commonly known as "Lamb waves." The backward 

directed wavefront appears to come from a ring-like source of radius b/ = a sinS/ (denoted 

by bR in the figure) where 0/ is the local angle of incidence at the trace velocity matching 

condition^ 

c/c/ = sine;, (1) 

where c is the sound speed in water and c/ is die phase velocity of die Lamb wave of 

interest. 

Steve Kargl has carried out several experiments which clearly indicate a surface- 

wave construction (of large amplitude) is focused in backscattering from hollow spherical 

shells in water. Kargl is also working to classify these surface wave contributions by 

numerical solution of the appropriate characteristic equation for Lamb waves on a curved 

sheU. These projects constitute die subject of an M.S. degree project for Kargl. Most 

experiments are being done widi a shell made of type 440C Stainless Steel with an outer 
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radius a = 1.905 cm and a wall thickness of 3.1 mm. (The sphere was originally 

manufactured by electrowelding together two identical hemispheres so as to produce a 

homogenous bond at the weld. The time records of the backscattering do not depend on 

the orientation of the bond.) The incident wave is a sine wave having a typical duration of 

four cycles and a frequency f in the range 400-900 kHz. 

Figure 1 is a record of the exact backward scattering for the case f = 751 kHz. The 

burst or echo near the left-hand side is the specular reflection from the sphere. The burst 

just left of center is the dominant surface wave contribution at this frequency. Note that ka 

= 61 where k = 27tf/c. Examination of record for the late times shows that this Lamb wave 

contribution is more rapidly damped than the Rayleigh wave contribution was in previous 

experiments^'^ with solid elastic spheres. The relative Lamb wave/specular amplitude ratio 

may be greater for hollow sphere than the Rayleigh/specular ratio^ was in the experiments 

with solid spheres. 

Figure 2 shows the amplitude (in arbitrary units) of the earliest Lamb wave echo 

(i.e., the second burst in Fig. 1). The horizontal axis is the backscattering angle y of the 

hydrophone receiver which is relative to the sphere's center C and a line from C to the 

distant sound source. The narrow central lobe and side lobe structure in Fig. 2 are 

manifestations of axial focusing. 

In our previous experiments with solid elastic spheres'*-^ the angular dependence of 

the surface wave echo is of the form: 

m) « Jo(^r/). (2) 

where the parameter X; gives the location (in the complex plane) of certain poles.^2-6 The 

rate of radiation damping of the elastic surface wave is proportional to Im(X/) where in the 

previous cases Im(A,/) « Re(X,/) and Im(^;) could be neglected in the evaluation of (2) 

so that 

fz(Y) "^ JO(AY). ' (3) 
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where A = Re(X/). The solid curve in Fig. 2 is an attempt to use the same approximation 

to fit the data by adjusting the parameter A to give a best-fit to the peaks. Unlike the 

previous plots for solid spheres,"^ clear discrepancies are evident close to the minima. The 

cause of this is evidently that we can no longer set Im(A,;) = 0 when evaluating the right- 

hand side of Eq. (2). This is the result of the largeness of the radiation damping of the 

Lamb waves. The physical reason is that the outgoing toroidal wavefi-ont (see Appendix I) 

is no longer homogeneous but has an amplitude which depends on direction. 

The mathematical analysis needed to improve the approximation of JQC^/Y) has 

been carried out; however, a full test of the theory will require numerical evaluation of ^/ 

ft-om a characteristic equation for the shell problem. To facilitate this Kargl has recently 

improved the numerical method we use for finding complex roots. 

D.   Focused Forward Scattering due to Lamb Waves on a Hollow 

Spherical Shell:   A Forward Acoustical Glory 

In addition to backward-directed toroidal wavefronts, surface waves should also 

produce forward-directed toroidal wavefronts. 1 Figure 3(a) shows the ray diagram for the 

forward directed wavefi-ont. The resulting amplitude should be focused along the forward 

axis, and, hence give rise to a forward glory. (Aspects of the optical forward glory have 

been studied for drops^ and bubbles.^) Kargl has verified that the dominant surface-wave 

contribution is focused along the forward axis. Figure 4 shows the normalized amplitude 

of the earliest surface-wave contribution for die hollow elastic sphere discussed in Sec. 

IXC. For tiiese data f = 701 kHz so that ka = 56. The narrow peak centered on forward 

(or 0 deg.) scattering is seen; however, a full theoretical description requires the completion 

of the analysis discussed in Sec. IXC. Xt is noteworthy that tiiis surface wave contribution 

clearly prgggdes in timg all other acoustical signals (such as geometric reflection and 

ordinary forward diffraction). Hence the focusing mechanism manifested in Fig. 4 is 

clearly different from that which causes "Poisson's spot" in the nearfield scattering.9 
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Furthermore, since the sphere is hollow, this early echo must be due to a Lamb wave since 

no bulk waves are transmitted through the sphere. 

E.   Focused Backscattering Due to Lamb Waves on a Hemispherical 

Shell 

It may be argued that (i) hemispheres will produce axially-focused scattering and 

(ii) that the focusing axis will f^epend on the angle \|/ between the figure axis (of the 

hemisphere) and the propagation direction of the incident wave.^ In the present discussion 

we will consider only the case where the angle \|/ = 0. Figure 3(b) shows the resulting ray 

diagram for the case of a hemispherical shell in water. A Lamb wave is launched in the 

shell at point A according to the trace velocity condition, Eq. (1). When that wave reaches 

the free edge of the shell at B, there will be a partial reflection of the Lamb wave as well as 

some radiation of sound into the surrounding water. The reflected energy in the shell will 

not all be in the same Lamb mode as that of the incident Lamb mode.^O 

To test these ideas a spherical shell identical to the one used in the aforementioned 

experiments (Sec. IIIC and D) was cut along a diameter so as to produce a hemispherical 

sheU. This was mounted with water on both sides of the hemisphere and with the figure- 

axis angle \|/ = 0. The incident wave was a four-cycle sine wave burst of frequency 701 

kHz. Figure 5 shows the resulting hydrophone output for the case of exact backscattering 

(Y = 0°). The earliest echo is the specular echo while the third echo (on the right-hand side 

of Fig. 5) exhibits focusing. Figure 6 shows the normalized hydrophone output for the 

third echo plotted as a function of the backscattering angle y. This plot verifies the 

presence of axial focusing and shows that the width of the main lobe is similar to those 

shown in Fig. 2 and 4. Since the frequencies for these 3 figures were similar, we may 

surmise that the echoes considered were each due to the same Lamb mode. 

The cause of the second echo in Fig. 5 is unclear at the time of this writing. Data 

indicate that this echo may also be focused. 
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Consideration of Fig. 3(b) shows that the mechanism for producing focused echoes 

can be present even if the sector of the shell is smaller (or larger) than that of a hemisphere. 

Hence, analysis of this problem should be helpful for understanding high-frequency 

scattering from elastic objects containing sectors of shells in water. 

IV.   Diffraction Catastrophes and Other Directional Caustics 

A. Motivation and Review 

Diffraction catastrophes are a class of foci which occur in various acoustical and 

optical problemsl-^.ll.Gl They are important for describing the wavefield since purely 

geometrical propagation rules give unphysically divergent amplitudes at foci as the 

wavelength vanishes. Item Cl (reproduced here as Appendix II) discusses this divergence 

and reviews other aspects of catastrophes. 

In previous research, we discovered that catastrophes are present in the far-field 

scattering of light from spheroids ^ and that the resulting diffraction pattern is useful for 

solving a restricted class of inverse scattering problems.^l-Gl As noted below, the 

resolution of issues raised during these optical scattering experiments has advanced the 

understanding of acoustical diffraction catastrophes.^l'Cl 

B. Wavefronts Which Produce Transverse Cusp Diffraction 

Catastrophes:   The Simplest Shapes 

Figure 1 of Appendbc n illustrates the geometry used to describe tiie propagation 

from an "exit" plane (x,y) to an observation plane (u,v). Then Eq. (II2a), where n refers 

to Appendk n, describes the pressure in the exit plane. The problem is to find die simplest 

form for the phase g(x,y) for which a cusp diffraction catastrophe appears in the (u,v) 

plane a distance z away. The result is given by Eq. (II2b) which is 

g(x,y) = aix2 + a2y2x + a3y2, (4) 
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where a2 9^0 and ai9t-(2z)-^ Subsequent to the preliminary analysis of this problem in 

the previous Annual Summary Report^^ several advances were made including:^!'^! 

(i) lifting a previous restriction that z lie in the far-field; 

(ii) complete reduction of the diffraction integral to the Pearcey form; 

(iii) inclusion of the optional term a3y2 in Eq. (4); and 

(iv) analysis of the sites of rays in the exit (x,y) plane and the merging of sites 

for (u,v) at a caustic. 

As discussed in Ref. Bl, the g(x,y) may include linear terms and other small 

higher-order terms; however, the form of Eq. (4), with &2 = 0, contains the essential 

features of the shape of the outgoing wavefront at (or near) the exit plane. Figure 7 shows 

the shape of such a representative wavefront. The parameters (chosen to simulate the 

reflection of underwater sound from a curved surface) were: 

ai = 0.2m-i, a2 = 0.2m-2,a3 = 0. 

It may be shown^l that -g(x,y) well approximates the shape of such a wavefront near the 

exit plane. Computational assistance for this, and other figures in item Bl, was provided 

by W. P. Amott, a graduate student supported by this contract. 

C.   Hyperbolic-Umbilic Diffraction Catastrophes:    The Wavefront 

Shape 

Figure 8(a) shows the hyperbolic-umbilic diffraction catastrophe which occurs in 

the far-field scattering of light from oblate drops of water. ^ ^'^l Catastrophe theory^2 

indicates that (i) this pattern decorates the region near where caustic lines meet with an apex 

angle \\f shown in Fig. 8(b); and (ii) these caustic lines separate the observation plane into 

a zero-ray region and a four-ray region (according to the number of ray sites in the exit 

plane). To give a quantitative description of this pattem we must first specify the 
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associated phase (or wavefront shape) g(x,y) in the exit plane. Marston has demonstrated 

that g is of the form 

g(x,y) = (ax3 + 37y2x)/6, (5) 

where here a and y are parameters. The essential feature is that the term quadratic in x^ 

in Eq. (4) has been replaced by a cubic term. The form of Eq. (5), though not the usual 

onel2 which appears in the literature on catastrophe optics (which is g = P(x3 + y3)) may 

be obtained by a smooth mapping from that form. The real test of the correctness of Eq. 

(5) comes by applying the Stationary Phase Condition and the Hession Condition H = 0 

as discussed in Ref. Bl and 12. This results in the caustic lines shown in Fig. 8(b) such 

that the apex angle is 

tan(\|//2) = (Y/a)l/2. (6) 

D.   Calculation of the Parameters for Wavefronts Resulting from 

Reflection or Refraction by Smooth Curved Surfaces:   An 

Example from Light Scattering and Novel Experimental Data 

To calculate the apex angle \\f for the specific case of scattering from an oblate drop 

Fig. 8(a), the ratio y/a is needed for the optical wavefront as it leaves the drop. See Eq. 

(6). To apply Eqs. (4) and (5) to problems involving the reflection or scattering of high- 

frequency sound (so as to describe the wavefield near the caustic) the parameter sets (a^, 

d.2, a^) and (a,p) are needed. Marston has formulated a procedure whereby these 

parameters may be found and has confirmed it for the case of light scattering from an oblate 

drop. 

The procedure is summarized as follows: 

(i) Locate the most singular ray (which corresponds to the one to the 

apex point in Fig. 8(b)). 
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(ii) Calculate the local principal curvatures of the wavefront associated with rays 

adjacent to the most singular ray found in (a). It is necessary to find these 

curvatures before and after each reflecting or refracting surface of the 

system, 

(iii) The principal curvatures near the singular direction of the outgoing 

wavefront contain the information needed for the desired parameters. 

To illustrate properly (iii), the wavefront specified by Eq. (5) has the following 

principal curvatures in the plane y = 0: 

ki = ax,k2 = 7X (7a,b) 

as one moves away from the planar umbilic point^^ at x = 0, y = 0. The problem then 

reduces to finding the coefficients of x in Eq. (7) for the outgoing wavefront. These 

coefficients are obtained by tracing the local principal curvatures of the wavefront as it 

propagates through the system from the source up to the exit plane. Kneisly^^ has 

presented a formahsm for tracing the curvatures through a reflecting and/or refracting 

system. Though this formalism is said to be useful in the design of optical instruments, the 

present applications to scattering and acoustical problems appear to be novel. 

To test the entire procedure, Marston carried out the required wavefront trace for 

once-reflected (twice-refracted) rays through an oblate drop. For the hyperbolic-umbilic 

diffraction catastrophe (h.u.d.c.) to be produced, the axis-ratio "D/H" of the oblate drop is 

related to the refractive index m byl'^-Al-Gl i 

D/H = [3m2/4(m2-l)]l/2, (g) 

where the drop's symmetry axis is vertical and the incident light propagates horizontally. 

The trace was carried out for an oblate drop specified by Eq. (8) with rays in the horizontal 

equatorial plane because of the condition y = 0 on Eq. (7). The result for a and y gives 

tan(\j//2) = (Y/a)l/2 = nV(12)l/2. (9) 
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For drops of water in air, m = 1.332 so that Eq. (9) gives y = 42.1 deg. As noted in Ref. 

U,\^ may be as large as 43.5 deg though the clearest set of data gives \j/ = 42 ± 2 deg in 

agreement with Eq. (9). 

It would be desirable to verify Eq. (9) for the case of a liquid drop having another 

value of refractive index m. It is necessary, however, that the acoustic levitation 

system! 1.A1 be capable of suspending the drop such that the aspect ratio D/H is given by 

Eq. (8). The equilibrium shape of a drop in a standing wave was calculated by Marston et 

al.l5 This theory was recently tested and confirmed by Trinh and Hsul6 for D/H close to 

unity. For the levitation apparatus presently here at W.S.U., the candidate liquid having 

the largest value of m is microscope immersion oil for which m = 1.515. Indeed, the 

h.u.d.c. was observed and found to have an appearance similar to that of Fig. 8(a). The 

apex angle was measured approximately (in real time) as Ygxp = 46 ± 2° while Eq. (9) 

gives Vtheory = 47.2°. Unfortunately the pattern cannot be photographed without 

modifications of the apparatus. 

It also appears that Kneisly's methodic of wavefront tracing may be applied to 

predict and/or locate diffraction catastrophes resulting from the reflection or refraction of 

sound from curved surfaces. 

E.   Reflection of Sound Pulses from Surfaces of Negative Gaussian 

Curvature 

Let the acoustic medium have a uniform velocity distribution. The outgoing wave 

front will have a local Gaussian Curvaturel2,Gl K^ ^ (x,y) = 0 at those points (x,y) where 

the normal is directed toward a far-field caustic. An example of such a point is x = 0, y = 

0 in Fig. 7. In typical reflection problems a wavefront which is nearly flat reflects from a 

surface for which the Gaussian CurvaUire K^^ > 0. The reflected wavefront diverges in 

such a way that K^f >0. 
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Reflection of a plane wave off of a surface for which Kgyrf < 0 will produce an 

outgoing wavefront for which K^ f < 0. Such a reflection of a transient pulse should 

result in a distortion of the pulse's shape in the far field. ^ It is desired to study this 

distortion for the reflection of ultrasonic pulses in water. The effort during the present 

contract period has been on the design of a suitable reflecting surface. ' 

F.   Scattering from Objects with Spherical Symmetry:   A Novel 

Expression for the Virtual Source Location 

The tracing of rays in problems related to scattering of sound from spheres (or the 

scattering of light from spherical drops or bubbles) is formally like tiiat for the scattering of 

particles from a central potential. Typically the outgoing rays appear to diverge from a 

point near (or within) the scatterer which represents the location of the virtual source of the 

scattered waves. In the case of glory scattering it is helpful to rotate the ray diagram (Fig. 1 

of Appendix I) about the symmetry axis CC so that the virtual source at FR traces out a 

ring. For the case of surface-wave glories (as in this figure) the plane which contains this 

ring also contains the center of the sphere.^ In other problems the plane of the ring is 

displaced from the center of symmetry; the phase Og of the glory wave in the far-field will 

depend on the backscattering angle y via^.^^js 

Og(Y) = - kD(l - cosy) + Oc, (10) 

where O^ is a constant which may be determined geometrically. Here D is the distance 

of the center of symmetry from the plane of the ring. For acoustical scattering from fluid 

spheres^ or die optical scattering from bubbles, the plane lies behind the center and D > 0. 

The virtual source location may be a useful concept in other scattering problems. 

For example, there has been considerable recent interest^^ in modeling the glory of waves 

scattered by the astrophysical objects known as "black holes." A simple description of the 
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phase Og was not given since expressions for D and Og; i.e., Eq. (10), had not been 

obtained.^^ 

For these, and other reasons (related to scattering from coated bubbles) Marston 

derived a general expression for D, the source distances. The method is a generalization of 

the one introduced by Langley (Appendix B of Ref. 21). The result is 

D = ±(de/db)-l       * (11) 

where 6(b) is the scattering angle for an incoming ray having an impact parameter of b 

(relative to the center of symmetry). The sign of Eq. (11) may be determined from 

geometrical rules. This result agrees with special cases discussed in Ref. 3, 7, 21, and 22. 

For the case of surface-wave glories, it may be argued that Id6/dbl diverges so that D 

vanishes as previously noted^.S while at rainbows IdG/dbl -> 0. 

V.  Light Scattering from Bubbles in Water;   Consideration of "Real" 

Versus "Ideal" Bubbles 

A. Motivation and Review 

This contract has previously supported research towards understanding the 

scattering of light from bubbles in water. The general approach and some possible 

applications in acoustics were reviewed in the previous Annual Summary Report.Gl Until 

recentiy the research emphasized the case of spherical bubbles havmg a gas-liquid interface 

free of adsorbed layers of molecules. 

B. Observations and Theory of Optical Backscattering from Freely 

Rising Bubbles in Water:   The Unfolded Glory of an Oblate 

Bubble 

During tiie past year die student working on tiiis project, W. P. Amott, has made 

considerable experimental, computational, and theoretical progress. It is anticipated tiiat a 
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FIGURE   9(a), 

FIGURE   9 (b). 
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manuscript describing this research will be prepared during the next year so that the present 

discussion will be largely qualitative (see also Ref. 23). 

Freely rising bubbles in water are subjected to hydrodynamic stresses which 

deform the bubbles into a shape closely resembling that of an oblate spheroidal with a 

vertical axis of rotational symmetry. In these experiments, the diameter D of the bubble is 

typically > 0.25 mm; D is measured by collecting the bubble against a glass plate after it 

rises through the scattering chamber. The aspect ratio (width/height) = (D/H) may then be 

well approximated from known hydrodynamic theory for a freely-rising bubble. Typically, 

(D/H) - 1 = 10-3; the bubbles are nearly spherical. Nevertheless, the cross-polarized 

backscattering pattern can differ significantiy from that of spherical bubbles in viscous oils 

previously photographed, l^-^^ 

For scattering from a spherical bubble the relevant outgoing wavefront has the local 

shape of a circular or parabolic torus as is illustrated in Fig. 9(a). The ray diagram for 

constructing this torus has been previously discussed.^. 17,22 xhe expanding wavefront is 

said to be "axially focused" along the symmetry axis of the torus. Furthermore, inspection 

of Fig. 9(a) shows there to be an infinite number of points for which the normal is parallel 

to the symmetry axis. These points lie on a circle on the wavefront where the Gaussian 

curvature of the wavefront K^ f = 0. The axial caustic is said to have an infinite co- 

dimension24 because of the infinity of rays in the focal direction. 

Now consider the problem of backscattering from a horizontally illuminated oblate 

bubble having a vertical axis of rotational symmetry. In the horizontal equatorial plane the 

bubble boundary is circular and the ray diagram is the same as that for spherical 

bubbles. 17.22 Consider now that vertical plane which contains the symmetry axis. In that 

plane the boundary is elliptical which results in a shifted optical path length. These shifts 

of the path length change the shape of the outgoing wavefront from that of Fig. 9(a) to the 

shape in Fig. 9(b), where the shift has been greatly exaggerated for clarity. Inspection of 

Fig. 9(b) shows that there is now only a finite number of points (four) where the normal is 
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BACKSCATTERING PATTERN FOR A SPHERICAL BUBBLE IN WATER. 

FIGURE 10. 

QUADRANT OF THE MODELED PATTERN FOR THE SCATTERED IRRADIANCE, 

FIGURE 11, 
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BACKSCATTERING PATTERN OF AN OBLATE BUBBLE RISING IN WATER. 

FIGURE 12.  . ; . 

FIGURE 13.  QUADRANT OF THE CALCULATED IRRADIANCE PATTERN, 
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parallel to the backscattering axis. The broken symmetry of the spheroid has (in the 

language of catastrophe theory) "unfolded" the axial caustic which would otherwise have 

an infinite co-dimension. The resulting scattering patterns have some fundamental 

significance since they illustrate the effect of such an unfolding. 

The measurement configuration used by Amott is similar to that used in our 

previous work on glory scattering. ^7,22 x^g important differences are: (i) the illumination 

is now vertically-polarized light (from an Ar-Ion laser) having a wavelength in air ^ = 514 

nm and (ii) the bubbles rise freely in water through the scattering chamber, having been 

created on a needle about 10 cm below the chamber. The camera is ahgned to record the 

cross-polarized far-field scattering into an angular region centered on the backward axis. 

The width of the region observed is about 9 degrees. 

Figure 10 shows the scattering pattern for a freely rising bubble in water having a 

measured diameter Dn, = 0.255 mm. Calculations and the previous experiments on 

bubbles in oill7,22 ^ho^ jh^t the cross-polarized backscattering from a sphere should: (i) 

have a four-fold azimuthal symmetry about the backward axis; and (ii) the cross-polarized 

backscattering should vanish in the exact backward direction which corresponds to a 

backscattering angle y of zero. Figure 10 is seen to be in qualitative agreement with these 

predictions. The angular interval Ay between the bright rings is approximately 0.19 deg. 

Comparison of Fig. 10 with preliminary results shown in Fig. 13 of the previous Annual 

Summary ReportG^ shows that Amott has significandy reduced the amount of background 

optical noise. Figure 11 shows one quadrant of the modeled scattering irradiance pattern. 

The diameter of the bubble used in this calculation was adjusted to fit certain features of the 

data; the resulting diameter was D^aic = 0.244 mm. 

For comparison, Figure 12 shows the scattering pattern for a larger bubble which 

had measured diameter Dn, = 0.334 mm. The angular interval Ay between the bright 

rings is approximately 0.13 deg. One quadrant of the scattering pattem has been replaced 

by a synthesized scattering pattem discussed below. Inspection of the original photograph 
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indicates that pattern is no longer four-fold symmetric about the backward axis. Let CJ5 

denote the azimuthal angle as measured relative to the incident wave's E-field polarization 

axis. The observed irradiance of the second fringe from the center has a minimum near <^= 

45 deg. Cross-polarized backscattering from spheres is predicted to have a sin2(2^ 

azimuthal dependencel7^2 which is maximized at f = 45° as evident in Figs. 10 and 11. 

The pattem in Fig. 12 shows a two-fold (or reflection) symmetry about the line ^= 0 and 

it manifests the aforementioned "unfolding" of the optical glory. 

Figure 13 shows one quadrant of the modeled pattem of the scattered irradiance for 

a bubble of diameter D^^j, = 0.337 mm. Here D^jjc was selected to best reproduce the 

measurements shown in Fig. 12 and is in good agreement with the measured value of 

0.334 mm. The oblateness for the bubble incorporated in the model was calculated from 

hydrodynamic theory for a freely rising bubble of diameter D^aic- The theory introduces 

the leading perturbation to the toroidal waveftont resulting from a small deviation from 

sphericity. (The effect of this perturbation on the shape of the wavefront is seen by 

comparing Fig. 9(b) with 9(a).) Figure 13 and the synthetic quadrant of Fig. 12 show that 

this perturbation technique satisfactorily describes measured pattems. The synthetic 

quadrant in Fig. 12 makes the comparison between experiment and theory easier because 

the two pattems have the same angular scales. 

The agreement between model and experiment shown here is representative of other 

case studies for which D < 0.4 mm. Large bubbles, say D > 0.6 mm, exhibit a 

qualitatively different backscattering pattem for which our perturbation approach may not 

be applicable. 

The brightness of the pattems seen in Fig. 10 and 12, relative to that of the 

background, support the suggestion ^ that it may be possible to detect sound by illuminating 

bubbly water with a laser so as to monitor the modulation of the backscattered light. 
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Wavefront perturbations, similar to that illustrated in Fig. 8(b), will also occur in 

the unfolding of acoustical axial caustics discussed in Sec. El. The analysis will be similar 

to that of the optical scattering problem discussed here. 

C.   Scattering of Light from a Coated Spherical Air Bubble in Water: 

A Computational Study of the Optical Effects of Adsorbed Films 

There is considerable evidence that bubbles in the ocean become coated by adsorbed 

molecules which inhibit the diffusion of gas to (and from) the bubble. One consequence of 

the reduction of the diffusion rate is that coated bubbles may take a long time to dissolve.25 

The acoustical resonance properties of bubbles may be affected by a film of adsorbed 

molecules; however, there are no published data which clearly support such a claim. With 

the partial support of this contract, a graduate student Stuart C. Billette developed and 

tested computer programs for calculating the light scattering from a spherical bubble in 

water coated by a film of uniform thickness. The method used was to evaluate the 

electromagnetic partial-wave series given by Aden and Kerker26 for the general concentric 

sphere problem. The bubbles of interest were typically very much larger than the optical 

wavelength so that the computation of this series is nontrivial. Billette's M.S. thesis 

discusses the computer programs and gives numerous curves for the calculated irradiance 

as a function of scattering angle. This thesis^^l is to be issued to DTIC as a Technical 

Report so that the summary given here wUl be brief. 

During the course of this investigation the research support for Billette and Marston 

was partially ttansferred to a contract with related goals.27 This was done to facilitate 

research on specific topics relevant to the development of an optical bubble-size 

spectrometer by Dr. Ming-Yang Su (Oceanographer, Naval Ocean Research and 

Development Activity). 

Figure 14 is an example of a computational result relevant to the design of a bubble 

size spectrometer. Let a denote the radius of a spherical air pocket and let h denote the 

thickness of the coating which surrounds it. The water (which is outside of the coating) is 
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taken to have a refractive index of 4/3 ~ 1.333 while the refractive index of the coating is 

1.5. Figure 14 shows the scattered irradiance for polarized light for the case in which the 

E field is parallel to (i.e., lies within) the plane of scattering. In all of the curves a = 37.8 

|im. The solid curve is for a coated bubble with h = 1 |im and was given by the exact 

partial-wave series. The curve with short dashes is for an uncoated bubble and was given 

by the Mie series. These numerical values for h and a are for the case ofred light having 

a wavelength in air of 633 nm. The slowly varying curve with short dashes is the result of 

the previous physical-optics approximation (POA) for scattering from a homogeneous 

bubble previously formulated by Marston and Kingsbury (see, e.g., Ref. 21). That curve 

is seen to approximate the coarse structure in the Mie curve (as well as the data for 

scattering from uncoated bubbles, see Ref. 21). The right-most smooth curve (which 

alternates along with a short dash) is a shifted plot of the POA curve. That shift was 

calculated geometrically by Marston so as to obtain an approximate description of the 

scattering from a coated bubble near the critical scattering angle == 82.8 deg. 

Figure 14 shows that the principal effect of tiie coating on the coarse structure is to 

shift slightiy its angular location and its quasi-period. Notice, however, the coarse 

structure should not be masked by the presence of the coating. Hence size spectrometers 

which make use of the coarse structure should still function if the bubble is coated. The 

coating may, however, introduce a small error (or shift) in the bubble size estimated from 

scattering data. It is noteworthy that the effects of the coating on the orthogonal 

polarization (E-field perpendicular to the scattering lane) were much more significant; tiiat 

choice of polarization may be unsuitable for use in a size spectrometer. These polarization 

effects may be explained in terms of physical arguments.Hl 

These calculations also suggest tiiat tiie polarized irradiance scattered near the 

Brewster scattering angle of 106 deg may, if suitably averaged over angle, be a monotone 

increasing function of the film thickness h. Hence measurements of this averaged 

Brewster angle irradiance may be useful for estimating the fihn thickness on freely rising 
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bubbles in sea water Hi The fine structure near this angle may also be useful for 

determining h. 

VI.  Production of Sound by a Pre-existent Bubble in Water Illuminated 

by Modulated Light:    A Novel Photo-Acoustic Source and Related 

Experiments on the Sounds Produced by Illuminated Drops 

A.   Review and Summary 

The previous Annual Summary ReportGl describes experiments and a simple model 

for the production of sound by bubbles in water illuminated by modulated laser light. 

These experiments^l and the development of an appropriate theory are the Ph.D. 

dissertation problem of a graduate student B. T. Unger. Unger has written a draft of his 

dissertation (which is now being revised). He is presently teaching high school science so 

as to qualify for certification as a teacher. Unger is not presently supported by this 

contract; however, it is anticipated that the dissertation will be completed and available in 

report form prior to May 1987. Consequently the present report will only outline the past 

year's progress. 

The experimental work was lunited by equipment problems, primarily because the 

digital signal averager had to be returned to the manufacturer because the power supply 

failed (which evidently damaged other components). Nevertheless there were several 

noteworthy accomplishments: 

(1) The sound radiated by a bubble in response to an optical burst of four pulses 

was detected using the procedure previously discussed.Gl In these new 

experiments the fundamental frequency f of the burst was initially set at the 

frequency fo of the bubble's monopole resonance. It was subsequently set 

about 15% above (and then below) fQ. The sound radiated for the cases f ^ 

fo was lower in amplitude than for the case f = fg as is to be expected from 

the previously oudined model.Gl 
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(2) The sound radiated by a bubble illuminated by four pulses having f = fg was 

detected as previously discussed. RecaU^l that the incident laser beam used in 

these experiments corresponds to the TEMOl* or "doughnut mode"; there is an 

irradiance minimum at the center. In the experiments, the peak optical power, 

determined by the laser and modulator system, was held constant at a value 

close to 1 watt. The relative magnitude of the sound radiated was measured for 

different bubbles for several values of the optical beam width. Though the 

measurements are somewhat qualitative the amplitude depends on the ratio of 

the bubble radius to beam widdi. See item (4) below. 

(3) The impulse response of the acoustical detection system was studied for 

various thermal acoustic sources including dyed drops of oil illuminated by 

modulated laser light and small pulsed electrical heating elements (i.e., 

resistors). This study was useful for calibration purposes. 

Theoretical advances included: 

(4) An improved model was developed for the radial projection of the optical 

radiation stress on the bubble. This stress is thought to be the principal 

mechanism whereby the bubble is set into vibration so as to radiate sound.d 

The model predicts that the stress will be a sensitive function of the ratio of the 

bubble radius to the beam width. As noted in item (2) above, the magnitude of 

the radiated sound was seen to depend on this ratio. 

(5) Improved models were developed for the radiation of sound from thermal- 

acoustic point-like sources. Such sources include the case of a small dyed oil 

drop illuminated by modulated light and (as a rough approximation) the case of 

a pulsed heater in water. The models are relevant to the calibration experiments 

noted in item (3) above. 
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VII. Acoustical Phase Conjugation 

A. Introduction and Review 

The principal objectives of the proposed research^ is to examine physical 

mechanisms for producing acoustical phase conjugating mirrors (PCM) and to verify 

certain focal properties of the conjugate wave. It will be assumed that the reader is 

cognizant with the early Soviet research on acoustical phase conjugation^ and with the 

analogy of a PCM with a real-time hologram which acts so as to focus the conjugate wave 

toward the source. The research during the present contract period has been concerned 

either witii understanding novel mechanisms or witii basic tiieory. 

B. The Focal Location of the Conjugate Wave Depends on a Ratio 

of Frequencies (A Novel Result) 

Soviet experiments (Kustov et al.29) carried out where the frequency f3 of the 

"conjugate" wave was different from the frequency f2 of the "signal" wave. In those 

experiments the PCM consisted of a layer of bubbles rising in water which were insonified 

by a large ampUmde pump wave having a frequency fj = 100 kHz. The signal incident on 

the PCM was radiated from a point-like source having f2 = 60 kHz. The nonlinear 

response gave rise to a "conjugate" wave having a frequency f3 = f ^ - f2 = 40 kHz. 

Measurements of the widtii of the conjugate beam, as a function of the distance z from the 

bubble layer, were presented as evidence of focusing towards the source. Presumably the 

researchers did not examine true phase conjugation, which would require that f2 = h = 

f i/2, because of problems with spurious signals. 

Marston has shown theoretically that the focal location of tiie "conjugate" wave will 

be displaced from the source when the frequency f3 ?t f2 as in tiiat experiment. Let Z2 

and Z3 denote tiie distance from the plane of bubbles to, respectively, the point-like source 

and the focus of the conjugate wave. Marston's analysis, which is based on a relationship 
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between the phases of the signal and conjugate waves at the bubble layer yields the 

condition: 

Z3 = Z2(f3/f2) . (12) 

for paraxial rays. This result can also be inferred from the well known change of scale for 

an optical holographic image which occurs when the image is "played back" at a different 

wavelength from that used during the recording of the original hologram. Indeed, Eq. (12) 

corresponds to a special case of an equation governing the image location in the 

holographic problem.30 

The focal shift impUed by Eq. (12) was not mentioned in Ref. 29 though it does not 

appear to be inconsistent with the data presented. 

C.   Novel Phase Conjugating Mirror for Use in Water 

To study the detailed focal and temporal properties of an acoustical phase 

conjugated wave, it would be desirable to replace the bubble layer used by Kustov et al.29 

by a stable layer of bubbles. Marston has considered various ways of doing this. The 

following method is suggested: Nuclepore^l filters consist of a membrane with uniformly 

distributed pores running through the membrane. The pore size is sharply defined by the 

manufacturing process. With suitable treatment the pores will contain a stable gas-filled 

cavity or microbubble. Furthermore these cavities exhibit a significant nonlinear response 

to ultrasound.32 Because the number density of pores may be quite large (> 10^ 

pores/cm2) it would seem that the associated trapped microbubbles should exhibit the 

nonUnear response required to mix the signal wave (ft-equency f2) with the pump wave 

(frequency fj) so as to produce the conjugate wave at frequency f3 = f^ - f2. 

Nuclepore membranes are flexible. Therefore it should be possible to study how 

the shape of the bubble layer affects the focal properties of the conjugate wave. 
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D.   Phase Conjugation Due to the Reflection of Sound from a 

Vibrating Surface 

Consider the reflection of sound incident with a frequency f2 from a surface which 

vibrates at a frequency f j. It is well known that the spectrum of the reflected wave is 

Doppler shifted so as to include the frequencies f2 ± fi- For example, these sidebands 

were recently used by Cox and Rogers32 in the case f j « {2 to measure the amplitude of 

low frequency surface oscillations. Those experiments stimulated Marston to consider the 

special case f^ = 2f2 as a possible method of producing a phase conjugated wave. 

Evidently there should be a sideband produced having a frequency fg = f2 - f^ = - f2. It 

may be argued that such a wave will be a conjugate of the incident wave and will be 

focused back towards the source. It turns out that the problem had akeady been studied in 

the Soviet literature though the published experimental data on the conjugate wave is 

somewhat unclear. Unfortunately the conversion efficiency for the production of a 

conjugate wave may be small unless the surface displacements are not negligible in 

amplitude in comparison to the wavelength.3435 

VIII. Other Research 

Previous research, supported partially by O.N.R. Physics Division, was published. 

This includes experiments demonstrating rapid cavitation in water (and in ethylene glycol) 

resulting from the reflection of a shock pulse from a liquid surface.C3 These experiments 

were novel in that the pulse duration was short (2 ^isec) and that the surface velocity was 

measured. . 

Previous theoretical research had tested the physical-optics approximation for the 

case of light scattered from spherical bubbles in liquid helium. This research was edited 

and put into its final form for pubUcation.^^l 
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SCATTERING FROM AN ALUMINUM SPHERE: 
FABRY-PEROT ANALYSIS OF RESONANCES 
BASED ON THE WATSON TRANSFORMATION 

K. L. Williams(a) and P. L. Marston 

Department of Physics, Washington State University, 
Pullman, Washington, USA 99164-2814 

The partial-wave series (PWS) giver by Faran 
[1] is useful for computing the scattering of a plane 
acoustic wave in water from an elastic sphere for the 
usual case in which viscous effects are negligible. We 
have recently [2] carried out a Sommerfeld-Watson 
Transformation (SWT) of Faran's PWS. This trans- 
formation is useful at high-frequencies where it con- 
verts the PWS to a more rapidly convergent form and 
allows one to ascertain the physical origin of various 
contributions to the scattering. In particular one can 
isolate the contributions from specular reflection, 
transmitted bulk waves, and surface waves and predict 
glory scattering [3]. 

In Sec. I of this paper we first recap some of the 
SWT results of [2]. We give quantitative expressions 
for the contributions due to the specular reflection, and 
Rayleigh and whispering gallery surface waves. After 
a brief discussion, the results for each surface wave 
type are recast in a novel closed form reminiscent of 
that used in the analysis of Fabry-Perot resonators 
[4,5]. The SWT analysis is confirmed by synthesizing 
|fl, the magnitude of the backscattering form function, 
for an aluminum sphere in water and comparing this 
synthesis with the PWS result. In Sec. II, some aspects 
of the present analysis are compared with aspects of 
Resonance Scattering Theory (RST) [6,7] and the 
Singularity Expansion Method (SEM) [8]. 

I.   SWT RESULTS, THEIR INTERPRETATION, 
AND THE SYNTHESIS OF f. 

The PWS for the scattered pressure in the 
far field of the sphere is commonly written [2,5,7] in 
terms of a complex form function f which depends 
both on the ka of the sphere (a is the sphere's radius and 
2jr/k is the wavelength in water) and the scattering 
angle. A harmonic time dependence of exp(-icot) is 
assumed in our analysis. The SWT [2] facilitates 
approximating f as f = fs + ftw + fsw for ^^^r 
backscattering where: fs is the specular reflection 
contribution, ftw is the transmitted bulk wave 
contribution, and fsw is the surface wave contribution 

and is the sum of contributions fp, fR, fwG ^^o^ 
Franz, Rayleigh, and whispering gallery waves 
respectively. Depending on ka and/or material 
parameters, there may be several significant Franz and 
whispering gallery waves though for the ka range 
considered here fp should be negligible and will not be 
considered. The specular reflection contribution fg 
has the form, Eq. 20 of [2], fs(x) = - Rs(x) exp(-i2x) 
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near backscattering; here x s ka, (-Rg) is the effective 
coefficient of reflection from the sphere given in [2], 
and (-2x) is the phase of the specular reflection relative 
to a ray traveling in the liquid to and from a reference 
point corresponding to the sphere's center. 

The contributions from the Rayleigh and 
individual whispering gallery waves are found from a 
residue analysis of complex poles v/ and have the form 
(Eq.(31)of[2]) 

h- -°z-^o^'"'iY>« 
m-O 

where / equals R for the Rayleigh wave or WGj for 
the jth whispering gallery wave (by convention j = 1 
corresponds to the slowest whispering gallery wave), 
Jo is the zeroth order Bessel function, y is the 
backscattering angle, and we have used the sub- 
stitutions a/ = Re(v/) and (3/ = Im(v/) > 0. The quanti- 
ties 9/ ,Ti/, P/, b/, a/, G; are all functions of x. The 
variables and summation in f/ have the following 
physical significance [2]: G/ accounts for the coupling 
efficiency of the /th wave onto the sphere as well as 
part of the effects of axial focusing; Jo(kb; y) gives the 
angular dependence of the near backscattering and is 
characteristic of glory scattering tested experimentally 
in [3]; b/ is shown in Fig. 1 for the case / = R; 9/ is the 
local angle of incidence of the /th surface wave (see 
Fig. 1); and the sum over m accounts for the surface 
wave circumnavigating the sphere an infinite number 
of times. The terms exp(ir|/) and exp(-2(7r-9/ )P/) are 
respectively the phase delay and attenuation for the 
first time the surface wave radiates sound in the 
backward direction after having traveled from the 
point B to B' in Fig. 1. The terms exp[i27tm(a/ + 1/2)] 
and exp[-27tmp/ ] are the additional propagation phase 
delay and attenuation of the surface wave after m cir- 
cumnavigations of the sphere and exp(-im7t) accounts 
for phase shifts due to caustics at K and C in Fig. 1. 

An alternate expression for f/ can be found by 
use of a geometric series which appears in the analysis 
of Fabry-Perot resonators [4,5] from which one finds 

-G^Jo(kbj_Y)exp[-2(TT-8j)8j^+lnj^] 
{l+exp[-2TT6j^+i2Tr(aj_+l5)]} (1) 

This novel closed form result for surface wave 
contributions is convenient for steady state 
computations. By inspection of Eq. (1) one sees that if 
x is such that a/ equals an integer n the magnitude of 
the denominator is close to a minimum since p, is a 
usually small and slowly varying function of x. 
Therefore, one sees a resonance behavior in |f/ (. In [5] 
this behavior was examined for the case of a tungsten- 
carbide sphere in water. 
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The above results can be used to obtain curves of 
|fl, the magnitude of the backscattering form function, 
as a function of ka for an aluminum sphere in water. In 
performing the analysis one uses f s and f/ evaluated 
at Y = 0. The material parameters used for aluminum 
are a density p = 2.7 gm/cm3 and longitudinal and 
transverse wave speeds of 6.420 and 3.040 km/s 
respectively while for water p = 1.0 gm/cm^ and the 
wave speed is 1.493 km/s. In Fig. 2 the SWT result 
using only the specular reflection and Rayleigh 
contributions to |f|, given by |fs + frJ = fsR. is 
compared with the exact result using the PWS labeled 
ffe. The ka range was chosen to correspond to the 
region where |fl for the aluminum sphere has major 
contributions from the Rayleigh and slowest 
whispering gallery wave. One sees in Fig. 2 that fsR 
is a good approximation to f), for the lower part of the 
ka region shown. In Fig. 3 the contribution from 
fwGl is included and fsRWG - \h + ^R + fwGll is 
compared with %. The increased agreement is 
evident. This synthesis of fb by addition of each 
surface wave contribution to the specular reflection 
allows one to see the significance of each surface wave 
in producing the resonance related structures. 

II. DISCUSSION 

The SWT is an alternate and complementary 
analysis of situations previously examined by RST. 
The SWT can be used to understand further how 
certain phase shifts [5] affect the structure of \f\. The 
reformulation of the series for f/ into the closed form 
of Eq. (1) is similar, in principle, to the "hybrid 
synthesis" technique used in SEM. The resonance 
condition (a/ = n) found in Eq. (1) is close to the 
resonance prescriptions [5] of both RST and SEM. 
When |f| is synthesized using RST there is a separate 
term for each resonance of the /th surface wave (i.e. 
for each value of n) while Eq. (1) accounts for all the 
resonances of the /th surface wave. The physical 
picture (Fig. 1) ensuing from the SWT is not restricted 
to spheres and may be used to predict the possibility of 
axial focusing for objects of revolution ensonified 
along the symmetry axis [3]. 
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Fig. 1. Ray diagram for surface waves on a sphere. 

2 

Fig. 2. |fl from PWS (solid curve) and synthesis 
(dashed) from Rayleigh and specular contributions. 

Fig. 3. As in Fig. 2 but including a whispering gallery 
contribution in the synthesis. 



■*■ 

46 
APPENDIX   II 

DIRECTIONAL CAUSTICS IN ACOUSTICS AND 
IN LIGHT SCATTERED FROM BUBBLES 

P. L. Marston 

Department of Physics, Washington State University, 
Pullman, WA 99164 U.S.A. 

Caustics were investigated for acoustical or 
analogous optical scattering problems. Examples 
include the glory of elastic spheres and the iptical cusp 
diffraction catastrophes of penetrable spheroids. The 
diffraction integral for the directional cusp reduces to 
the usual Pearcey function (known to be descriptive of 
a longitudinal cusp) only after a nontrivial 
transformation which facilitates a simple description of 
the outgoing wavefront. The analysis (given here) 
shows that the transverse cusp is not confined to the far 
field. Observations of novel directional caustics in the 
optical scattering patterns of bubbles in water (which 
are of interest in cavitation and ocean acoustics 
research) are also reviewed. Caustics appear to be 
particularly useful in certain inverse problems. 

INTRODUCTION 

To understand short-wavelength scattering and 
propagation problems it is important to distinguish 
between wavefronts which produce caustics and those 
which do not. Caustics at infinity (i.e. far-field foci) 
are produced in homogeneous media in directions 
where the Gaussian curvature K vanishes for an 
outgoing wavefront [I]. Canonical diffraction 
integrals can be used to show that the pressure 
amplitude at caustics varies as 

p =c   idJT)i(iJXf,   (1) 

if the dependence of the attenuation on the wavelength 
X may be neglected. Here r refers to the distance 
from the scatterer or, more generally, an exit plane 
where the outgoing wavefront is specified; d has the 
dimensions of length and is determined by the outgoing 
wavefront. In scattering problems d is proportional 
to the size of the scatterer. The Arnold singularity 
index (3 typically has values in the range 1/6 < P < 1/2 
(the case [1,2] of "diffraction catastrophes") though 
special caustics are possible for which 1/2 < p < 1 (see 
Sec. II and III). Wavefronts which are not focused are 
describable by geometrical optics and have a pressure 
contribution as in (1) but with P = 0. The scattering of 
sound from fluid [3] or elastic [4,5] spheres gives rise 
to both focused and unfocused wavefronts as does the 
scattering of light from bubbles [6,7] and drops [8-10]. 
In this paper I give new results and note other recent 
discoveries. 

I.  WHAT IS THE SHAPE OF THE WAVEFRONT 
WHICH PRODUCES A TRANSVERSE CUSP 
CAUSTIC? 
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The scattering of light from spheroidal drops of 

water into the rainbow region was recently observed to 
manifest hyperbolic-umbilic [8,9] and cusp [10] 
diffraction catastrophes not previously known to 
appear. The analysis presented here suggests 
mechanisms for the generation of transverse cusp 
diffraction catastrophes in acoustics. Figure 1 
illustrates what I mean by a transverse cusp. An 
acoustical or optical wavefront propagates from the 
(x,y) plane such that a cusp caustic is present in the 
(u,v) plane which is parallel to the (x,y) plane but is 
displaced from it by a distance z. TTie cusp locates the 
transition in the (u,v) plane of the number of rays 
which contribute to the amplitude according to 
geometric optics: point P' is shown in the region 
where 3 rays contribute whereas outside the cusp only 
1 ray contributes. (Of course, as in the scattering from 
drops [8-10] other rays may be present which do not 
participate in this catastrophe by merging with the 
participating rays at the most singular point.) In optics 
the wave in the exit plane arises from the combined 
effects of refraction and reflection by a drop while in 
acoustics the wavefront may be produced by reflection 
from a curved surface or by a volume perturbation in 
the speed of sound. It should be emphasized that the 
cusp considered here differs fundamentally in its 
orientation (with respect to the wavefront in the exit 
plane) from the longitudinal cusp in ocean acoustics 
proposed in unpublished work by R. L. Holford (see 
Fig. 12.31 of [2]). Holford found that certain depth 
dependences of the ocean's sound velocity bend rays 
from a point source upward so as to reflect from the 
sea surface producing a longitudinal cusp which 
unfolds along the direction of propagation. 

I show here that the wave in the exit plane having 
a pressure given by the real part of 

p(x,y) = f(x,y)e-iMt eikg, 

g(x,y) = aix2 + a2y2x + a3y2. 

(2a) 

(2b) 

produces a transverse cusp. Here k = co/c = 2nlX > 0 
where the phase velocity c is constant and the functions 
f and g are real valued and slowly varying. The 
Fresnel approximation is used for the distance between 
representative points P and P' so the analysis is not 
restricted to the far field. The exp(-i(ot) dependence 
will be suppressed and (to be discussed) f will be taken 
to be constant and of unit amplitude. The diffracted 
pressure p(u,v) may then be approximated as 

p(u,v) = (i>.r)-l eikr F(u,v), (3) 
CO 

F = JJ eik[g + (x^+y^)/2z-(xu + yv)/z]dxdy    (4) 
—CO 

Introduce the new parameters bj = aj + l/2z and 
integrate over x. Defining the dimensionless variable 
s = y|a2/2|i'2|k^i|l/4gives 
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F = |7i/kbi|l/2e±it/4exp(-iku2/4biz2)J       (5) 

fP*(X,Y)] 
J(u,v)   =   |bi/k|l/4 |2/a2|i'2 j )      (6) 

where the upper (lower) options in (5) and (6) are used 
if bi > 0 (bi < 0) and P(X,Y) is Pearcey's integral 
[11,2] 

P = J  exp[i(s4 + s2X + sY)]ds; (7) 

P* is the complex conjugate. The real parameters X 
and Y are 

X = -|k^i|l/2[(u/z) + (2bib3/a2)]sgn(a2),   (8) 

Y = k3/4|bi|l/4|2/a2|l/2(v/z)sgn(bi) (9) 

The cusp is located at [2,11] 8X3 + 27Y2 = 0 SO the cusp 
point is at u = 0 only if b3 = 0. When a2 < 0 the cusp is 
reversed from the orientation shown in Fig. 1. 

For points near the axis the horizontal and 
vertical observation angles become 6 = u/z and C, = v/z. 
Photographs of optical diffraction patterns which 
decorate the cusp region are shown in [8,10] and 
similar distributions in the acoustic intensity are 
anticipated near a cusp. The Fresnel approximation 
leading to (3) requires that 

z3»(l/8)k[(x-u)2 + (y-v)2]2, (10) 

for (x,y) which contribute significantly to F. The 
significant (x,y) are near the stationary-phase points of 
F and for small u and v, (10) becomes z3 » k(b32 + 
2bib3)2/8a24. It has been assumed that f is slowly 
varying in the (x,y) region of the stationary phase 
points of F. Inspection of (3) - (7) shows that [3 = 1/4 at 
the cusp point as has been anticipated [1,2]. For a cusp 
to be formed it is essential that a2 T^ 0 and bj ^^^ 0; when 
b3 = 0 and 32 ^ 0, J ^ 2jr5(kv/z) as expected. 

The wave shape (2b) for generating a transverse 
cusp appears to be a novel result though it may also be 
argued from an isomorphism between classes of 
singularities and Weyl groups and an equivalency 
relation between the A3 and D3 groups. A wavefront 
of this shape may be produced by reflection from 
curved surfaces or refraction by inhomogeneities. 
Note that g is not of the form ax4 + bx2 + cy2. 

II. OPTICAL GLORY OF BUBBLES IN WATER 

When a spherical bubble in a liquid is 
illuminated, toroidal wavefronts are produced for 
which K -^ 0 in the backward direction. This is an 
example of an axial caustic [1] for which the scattering 
amplitude has p = 1/2. The optical glory of bubbles 

was first observed for bubbles in an oil [6]; however, it 
was recently photographed here for freely rising 
bubbles in water having diameters as large as 0.3 mm. 
A theory for the optical glory of spherical bubbles in 
water was confirmed with Mie theory [7]; however, the 
theory must be modified for bubbles larger than 0.3 
mm due to their asphericity. The characteristic 
backscattering pattern [6,7] may be useful for the 
remote detection and sizing of bubbles. The forward 
optical glory of bubbles was also photographed. 

III. ACOUSTICAL AXIAL CAUSTICS 

When a large elastic sphere is insonified, 
backward directed toroidal wavefronts are produced as 
a consequence of bulk transmitted waves [4] and 
surface waves [5]. The amplitudes for the transmitted- 
wave glories are characterized by p = 1/2 though the 
total steady-state amplitude superposes several classes 
of waves. The diffraction pattern characteristic of 
acoustical axial focusing was detected and models for 
the amplitude were confirmed [4,5]. Models of the 
acoustical glory of fluid spheres were confirmed by 
comparison with computations of the partial-wave 
series [3]. For a particular sound speed ratio p is 2/3 
because of a superposition of axial and rainbow-like 
caustics. 
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Fig. 1. Diffraction geometry in uniform media. 
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